

Full MISO situation:

Measure output w_j of target module and all in-neighbors $w_{\mathcal{N}}$ of w_j

Multi-input single-output identification problem addressed by either a direct or indirect method

Question:

Can we reduce the number of input signals? Do all in-neighbors of w_j need to be included?

4 input nodes to be measured:

Can we do with less?

Network immersion [1]

- An immersed network is constructed by removing node signals, but leaving the remaining node signals invariant
- Modules and disturbance signals are adapted
- Abstraction through variable elimination (Kron reduction^[2] in network theory).

^[1] A. Dankers. PhD Thesis, 2014.

^[2] F. Dörfler and F. Bullo, IEEE Trans. Circuits and Systems I (2013)

Immersion

Immersion

Immersion

When does immersion leave G_{21}^0 invariant?

Proposition

Consider an immersed network where w_1 and w_2 are retained.

Then
$$\check{G}_{21}^0=G_{21}^0$$
 if

- a) Every path $w_1 o w_2$ other than the one through G^0_{21} passes through a node that is retained. (parallel paths)
- b) Every path $w_2 \to w_2$ passes through a node that is retained. (loops around the output)

Choose w_6 as an additional input (to be retained)

Choose $oldsymbol{w_3}$ as an additional input, to be retained

Conclusion:

With a 3-input, 1 output predictor model, the module G_{21}^0 remains invariant.

The **indirect method** can directly be applied to this reduced-input situation, and provides **consistency**

 V_{6} W_{6} G_{76}^{0} G_{76}^{0} G_{76}^{0} G_{37}^{0} G_{37}^{0} V_{3} G_{43}^{0} W_{4} G_{54}^{0} G_{54}^{0} G_{45}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{12}^{0} G_{13}^{0} G_{14}^{0} G_{15}^{0} G_{15}^{0}

For the **direct method** the properties of the **disturbances** need to be further investigated

Invariant modules for a given set of measured nodes

For a selected set of measured nodes: algorithm determines with modules remain invariant:

Generalization of immersion

Parallel paths and loops around the output can also be blocked by indirect measurements:

- ullet In stead of measuring w_u we measure a descendant of w_u
- ullet Every path from w_i to that descendant needs to be blocked too
- Indirect measurements may lead to non-proper modules

[3] H. Weerts, J. Linder, M. Enqvist & PVdH, Automatica, 2020

see e.g. Linder and Enqvist^[1], Gevers et al.^[2], Weerts et al.^[3]

TU/e

^[1] J. Linder and M. Enqvist. *Int. J. Control*, 2017.

^[2] A. Bazanella, M. Gevers et al., CDC 2017.

Generalization of immersion - Abstraction

The applied reasoning is to exploit the degrees of freedom in the network representation:

$$\begin{bmatrix} w_{\tilde{\mathcal{S}}} \\ w_{\mathcal{L}} \\ w_{\mathcal{V}} \\ w_{\tilde{\mathcal{Z}}} \end{bmatrix} = \begin{bmatrix} G_{\tilde{\mathcal{S}}\tilde{\mathcal{S}}} & G_{\tilde{\mathcal{S}}\mathcal{L}} & G_{\tilde{\mathcal{S}}\mathcal{V}} & G_{\tilde{\mathcal{S}}\tilde{\mathcal{Z}}} \\ G_{\mathcal{L}\tilde{\mathcal{S}}} & G_{\mathcal{L}\mathcal{L}} & G_{\mathcal{L}\mathcal{V}} & G_{\mathcal{L}\tilde{\mathcal{Z}}} \\ G_{\mathcal{V}\tilde{\mathcal{S}}} & G_{\mathcal{V}\mathcal{L}} & G_{\mathcal{V}\mathcal{V}} & G_{\mathcal{V}\tilde{\mathcal{Z}}} \\ G_{\tilde{\mathcal{Z}}\tilde{\mathcal{S}}} & G_{\tilde{\mathcal{Z}}\mathcal{L}} & G_{\tilde{\mathcal{Z}}\mathcal{V}} & G_{\tilde{\mathcal{Z}}\tilde{\mathcal{Z}}} \end{bmatrix} \begin{bmatrix} w_{\tilde{\mathcal{S}}} \\ w_{\mathcal{L}} \\ w_{\mathcal{V}} \\ w_{\tilde{\mathcal{Z}}} \end{bmatrix} + \begin{bmatrix} u_{\tilde{\mathcal{S}}} \\ u_{\mathcal{L}} \\ u_{\mathcal{V}} \\ u_{\tilde{\mathcal{Z}}} \end{bmatrix} + \begin{bmatrix} v_{\tilde{\mathcal{S}}} \\ v_{\mathcal{L}} \\ v_{\mathcal{V}} \\ v_{\tilde{\mathcal{Z}}} \end{bmatrix},$$

- $i, j \in \tilde{\mathcal{S}}$ as well as other measured nodes
- nodes in $\mathcal V$ are not measured but indirectly observed by nodes in $\mathcal L$
- Remove $w_{\tilde{z}}$ by solving for the 4th equation.
- Remove $w_{\mathcal{V}}$ by solving for the 2nd equation.

$$\begin{bmatrix} w_{\tilde{\mathcal{S}}} \\ w_{\mathcal{L}} \end{bmatrix} = \begin{bmatrix} \check{G}_{\tilde{\mathcal{S}}\tilde{\mathcal{S}}} & \check{G}_{\tilde{\mathcal{S}}\mathcal{L}} \\ \check{G}_{\mathcal{L}\tilde{\mathcal{S}}} & \check{G}_{\mathcal{L}\mathcal{L}} \end{bmatrix} \begin{bmatrix} w_{\tilde{\mathcal{S}}} \\ w_{\mathcal{L}} \end{bmatrix} + \begin{bmatrix} \check{u}_{\tilde{\mathcal{S}}} \\ \check{u}_{\mathcal{L}} \end{bmatrix} + \begin{bmatrix} \check{v}_{\tilde{\mathcal{S}}} \\ \check{v}_{\mathcal{L}} \end{bmatrix}.$$
 Determine condition which $\check{G}_{\tilde{\mathcal{S}}\tilde{\mathcal{S}}} = G_{\tilde{\mathcal{S}}\tilde{\mathcal{S}}}^0$.

Determine conditions under

Conclusion:

With a 3-input, 1 output model we can consistently identify G_{21}^0

with an indirect method

For the direct method the condition that $\Phi_v(\omega)$ is diagonal needs to be sharpened in the situation that not all in-neighbors are taken as predictor inputs.

This is going to be addressed in the local direct method

